Hermite Spectral Method for the Inelastic Boltzmann Equation
نویسندگان
چکیده
منابع مشابه
Entropy monotonic spectral method for Boltzmann equation
We propose a spectral method that discretizes the Boltzmann collision operator and satisfies a discrete version of the H-theorem. The method is obtained by modifying the existing Fourier spectral method to match a classical form of the discrete velocity method. It preserves the positivity of the solution on the Fourier collocation points and as a result satisfies the H-theorem. The fast algorit...
متن کاملThe spectral iterative method for Solving Fractional-Order Logistic Equation
In this paper, a new spectral-iterative method is employed to give approximate solutions of fractional logistic differential equation. This approach is based on combination of two different methods, i.e. the iterative method cite{35} and the spectral method. The method reduces the differential equation to systems of linear algebraic equations and then the resulting systems are solved by a numer...
متن کاملThe Boltzmann Equation for Driven Systems of Inelastic Soft Spheres
We study a generic class of inelastic soft sphere models with a binary collision rate g that depends on the relative velocity g. This includes previously studied inelastic hard spheres (ν = 1) and inelastic Maxwell molecules (ν = 0). We develop a new asymptotic method for analyzing large deviations from Gaussian behavior for the velocity distribution function f (c). The framework is that of the...
متن کاملSpectral-Hermite Approximation of the Linearized Boltzmann Collision
A sequence of approximate linear collision models for hard-sphere and inverse-power-law gases is introduced. These models are obtained by expanding the linearized Boltzmann collision operator into a Hermite series, and a practical algorithm is proposed for evaluating the coefficients in the series. The sequence approximates the linearized Boltzmann operator to high accuracy, and it establishes ...
متن کاملMixed Hermite-Legendre Spectral Method
In this paper, we propose mixed generalized Hermite-Legendre spectral method for partial differential equation set in an infinite strip. We investigate mixed generalized Hermite-Legendre approximation. We propose the new algorithm for various boundary condition problems with variable coefficient. The global convergence of proposed algorithms is proved. Numerical results demonstrate the spectral...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Social Science Research Network
سال: 2023
ISSN: ['1556-5068']
DOI: https://doi.org/10.2139/ssrn.4353539